Corps de décomposition - TD 4

Sauf si c'est précisé autrement, tous les polynômes sont considérés dans $\mathbb{Q}[x]$.

Rappel: $f(x) \in \mathbb{Q}[x]$ est irréductible si et seulement $f(x+1) \in \mathbb{Q}[x]$ est irréductible.

- 1. En utilisant le fait que $e^{2\pi i/9} = \cos\left(\frac{2\pi}{9}\right) + \sin\left(\frac{2\pi}{9}\right)i$, déterminer le polynôme minimal de $\cos\left(\frac{2\pi}{9}\right)$. Montrer que $\left[\mathbb{Q}\left(\cos\left(\frac{2\pi}{9}\right)\right):\mathbb{Q}\right] = 3$.
- **2.** Décrire le corps de décomposition du polynôme $(x^2 5)(x^2 + 1)$.
- **3.** Montrer que le corps de décomposition E d'un polynôme de degré 2 dans $\mathbb{Q}[x]$ est une extension simple de \mathbb{Q} . Déterminer $[E:\mathbb{Q}]$.
- **4.** Décrire le corps de décomposition du polynôme $x^4 2$.
- 5. Décrire le corps de décomposition du polynôme $x^3 1$.
- **6.** Décrire le corps de décomposition du polynôme $f_m(x) = x^3 m$, pour tout $m \in \mathbb{Z}$.
- 7. Soit E le corps de décomposition d'un polynôme $f(x) \in \mathbb{Q}[x]$ de degré 3. Si $[E : \mathbb{Q}] = 3$, montrer que toutes les racines du polynôme sont dans $\mathbb{R} \setminus \mathbb{Q}$.
- 8. Décrire le corps de décomposition du polynôme $x^4 2x^2 5$.
- **9.** Soit f(x) le polynôme minimal de $\alpha := \sqrt{3 + \sqrt{2}}$. Montrer que le corps de décomposition de f(x) est $\mathbb{Q}(\alpha, \sqrt{7})$.
- **10.** Décrire le corps de décomposition du polynôme $x^3 + 2x + 1 \in \mathbb{F}_3[x]$.